
LJC LA /F/6D S

O PAGEForm Approved

mOCUMENTATION PAGE O MB No. 0704-0188

A D-A 206 021 lb RESTRICTIVE MARKINGS

3. DISTRIBUTION /AVAI LAILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE ; r ' jj..Ic ac

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
J: - rk, - o - ', 'I

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION1 (If applicable)
Stanford University AFOSR/NA

6c. ADDRESS (City, State, and ZiP Code) 7b. ADDRESS (City, State, and ZIP Code)

A.c.ro 0'.c:C,.I L ;eer . Building 410
Stanford, CA 94305 Boiling Air Force Base, D.C. 20332-6448

Sa. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

AFOSR I NA-?77 . P- '
Sc. ADDRESS (City, State, and ZlP Code) '10. SOUCE OF FUNDING NUMBERS

Building 410 PROGRAM PROJECT ITASK !WORK UNITELEMENT NO.NO NO ACCESSION NO.

Boiling Air Force Base, D.C. 20332-6448 E N N. N A NO.

11. TITLE (Include Security Classification)
Strange Attractor Dimensions in Poiseuille Flow

12. PERSONAL AUTHOR(5-
Moin, Parviz
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final I FROM 12/1/87 TO 1/30/89 1 89/2/13 , 30
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP 1- 4-o 4~4 - , CAAAIA to

LA I r A' k e2r ~~- A% A4

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

It is shown that fully developed channel flow is confined to a strange attractor. However, the
dimension of the attractor is much larger than dimensions encountered in closed flows such as
Benard Convection and Taylor-Couette flow. In addition, we have examined the relationship
between turbulent structures and attractor geometry. , 0" DTICSELECTS

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT RT .ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIF:ED/UNLIMITED 0 SAME AS RPT C] DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

James M. McMichael (2012 767-4936 NA
DO Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF '"$ PGE

)A3Ce.., 5- Sf'P &_



Final Report: AFOSR-88-0056

Dd-o~TR-T. 9- 3 0 4

THE DIMENSION OF ATTRACTORS UNDERLYING

TURBULENT POISEUILLE FLOW Accession For

NTIS GRA&I
DTIC TAB
Unannounced f] -

Distribution/ / 7
Availability Codes

?Ava'J an~d/or
Dist Special

Laurence Keefe and Parviz Moin

Mechanical Engineering Dept.,Stanford University, Stanford, CA 94305

89 30 9 044



INTODUCTION

Is the "strange attractor" the correct mathematical model for fully developed

turbulent flows? We believe that our research, descrihed below, has successfully pro-

vided an affirmative answer to this question. Nonlinear dynamical systems theory

excites interest as a turbulence theory because it provides an explicit mathematical

framework to connect the chaotic, time dependent dynamics of real flows to the

structure of the Navier-Stokes(NS) equations. The theory demonstrates that:

* The dynamics of dissipative systems ( of which turbulence is one ) are often

confined to strange attractors.

* Such attractors carry within their intrinsic structure a well defined mecha-

nism(usually called "sensitive dependence on initial conditions") that can pro-

duce chaotic and unpredictable behavior in all physical systems, without re-

quiring random forcing.

* If fully developed turbulence is confined to a strange attractor, it is describable

by a finite number of degrees of freedom, despite the NS equations being infinite

dimensional. This has encouraged hope that the turbulence problem can be

reduced in apparent complexity by projecting it onto some special basis.

e It is not a statistical theory. Statistical theories take the nonlinear NS equations

and tranform them into stochastic, linear equations. Any random behavior in

these equations can be traced explicitly to the stochastic model used to replace

the nonlinear terms in the NS equations.

* Chaos theory does not model turbulent dynamics, it analyzes them. The dy-

namics of the system are governed by the full NS equations and randomness

results from the explicit nonlinearities in the equation, not some random model

of them. By doing so it has given the first real clue as to the origins of ran-

domness in fluid turbulence.

'>In the end, what is sought from any theory of turbulence is a universal frame-

work that allows known phenomena to be understood, calculated, and related, and

a predictive capability for unknown flows or control measures. Crucial to the erec-

tion of such a structure is a kPnwledge of the fundamental mathematical character

of turbulence. The purpose of this research has been to investigate this character

to determine if chaos theory and the strange attractor can provide the foundation
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for such a global theory.

PREVIOUS WORK

There is much theoretical and experimental workl - 6 that establishes chaos

theor-y as the underlying mathematics of closed flows such as B~nard convection

and Taylor-Couette flow. Our work is one of the first to establish links between

chaos theory and a complex, fully developed, turbulent flow of aerodynamic inter-

est. Our preliminary results on dimension, reported with our original prop oZa, were

obtained from low resolution simulations of channel flow that reproduced calcula-

tions reported in the literature7 . We now believe the cited work to be incorrect.

At worst, the "turbulence" computed there is completely spurious, totally an arte-

fact of the numerics. At best, its characteristics so strongly depend on simulation

parameters, such as timestep, that no one is likely to consider the results reliable.

As a result of this painful discovery we have had to redo the dimension calculation

at a higher Reynolds number and resolution, after exhaustively establishing a new

simulation of the channel flow which does not suffer from the same defects as the

one we originally reproduced. It is these new results that we report here.

RESULTS

Our research program has developed along two lines. The first has been the

dimension calculation originally proposed. As an outgrowth of our work there we

opened a second, and began studying the relation between the structure of attractors

and the turbulent phenomena they represent. This latter will be discussed briefly

below.

Our primary research has established the first strong evidence that the turbu-

lent solutions of the NS equations are confined to a strange attractor. At a single

Reynolds number in turbulent channel flow we have determined the dimension, D),

of the underlying attractor, having measured sufficient of the Lyapunov exponent

hierarchy, Aj, to calculate this quantity from the Kaplan-Yorke' definition:

j
D = + IAj+1I- Ai

i=1

where ji Ai> 0, _j= A, < 0.

The results of the calculation are displayed in Figure 1, where the values of the

Lyapunov exponents Ai are plotted against their index i. The first 450 exponents
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V.

were calculated, at a cost of some 400 hours of cpu time on a CRAY 2. During

this time the basic flow convected almost 1300 channel half widths. The slight non-

uniformities in the distribution result from some lack of convergence of the exponent

values even after these long time scales. Application of the Kaplan-Yorke formula
to this distribution yields a dimension of DX - 360, and a metric entropy h,, a 97.

The first 166 exponents are positive. Though the computational grid is 16 x 33 x 8,
and there are three velocity components at each node, particular features of the

flow solver reduce the independent nodes to 15 x 33 x 7, and the incompresibility

of the flow means that only two of the velocity components are independent. Thus

there are 15 x 33 x 7 x 2 = 6930 degrees of freedom in the calculation, and the

attractor dimension is roughly 6% of the dimension of the complete phase space.

Calculating the dimension of the solution attractor measures the number of
degrees of freedom needed to characterize a point on the attractor, and is a direct

measure of the intrinsic complexity of the turbulence. Of the several definitions 9,10

of dimension available, we have chosen to use the Kaplan-Yorke formula(which

bounds the fractal dimension11 ), since we have access to the dynamical equations(

the NS equations) of the system, and can calculate the Lyapunov exponent hierar-

chy. This is in contrast to the one previous attempt 12 to calculate the dimension of

attractors in Poiseuille flow, which employed methods most suited to data derived

from experiments. This attempt failed, concluding that the dimension is greater

than 40. Because our calculations indicate the dimension is almost an order of

magnitude greater than 40, it is clear that none of the "experimental" methods

for measuring dimension can be expected to work on this problem, because the

data required exceeds current computer storage capabilities. This is true whether

the method is a variant of the "correlation" dimension, 10 or is one of the newer

techniques 3 ,"4 to calculate the Lyapunov exponents experimentally.

The Lyapunov exponents of turbulent PoiseuiUe flow were calculated using
standard' s methods. The core of the algorithm was a flow solver written to perform

full numerical simulation of low Reynolds number, channel flow. 16 The periodic

application of a Gram-Schmidt orthogonalization to the separation vectors, required

by the algorithm, has been checked to verify that the cosine of the angle between any
two orthogonalized members of the set was never greater in magnitude than 10-11.

Numerical applications of the Gram-Schmidt process are known to be susceptible
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to round-off errors when one begins with N vectors in an N-dimensional space and

seeks to obtain N mutually orthogonal vectors from them. Such is not the case

here, for the dimension of the phase space is 6930 and, at most, we seek
450 mutually orthogonal directions in that space.

The flow conditions for which the dimension was calculated correspond to
a Reynolds number R., based on pressure gradient(=IVpL 3 /2pv , p= pressure,

L=channel half-width, p=density, v=kinematic viscosity) of 3200. This corre-
sponds to a Reynolds number Re,, based on wall scaling, of 80. It is below the

value where the laminar flow becomes linearly unstable(R. = 5772), and in the

region(Rp _ 2900) where it becomes unstable to finite-amplitude, two-dimensional

disturbances. The simulated flow is definitely chaotic, and does a good job of pre-

dicting the mean velocity profile and turbulent intensities, but is a poorly resolved

simulation in the sense that the computational grid in planes parallel to the channel
walls is sparse(16 x 8), even though it is better resolved (33 points) in the direction

perpendicular to the walls. This Reynolds number is near the minimum for which

turbulent channel flow can be sustained . The restricted range of spatial scales

resolved, as well as the small domain of the calculation, lead us to believe that

our results are a lower bound on the true dimension of the flow at this Reynolds

number. However, the proof of this contention awaits completion of calculations at

both increased resolutions and domain size. Unlike results found in two-dimensional

B1nard simulations I T, we know that there is no "return to order" as reso-

lution is increased at this Reynolds number.

The second line of research has been devoted to relating turbulent structure
to attractor geometry. Expanding on previous suggestions i s , a geometrical inter-

pretation of conditional sampling schemes in the phase space of the attractor has

shown how "coherent structures" naturally result from the exponential divergence
property of the attractor underlying fully developed turbulence. This point has

been demonstrated first with the Lorenz system and then using both the VITA and

Quadrant techniques on velocity fields computed from channel simulations. Any
conditional sampling scheme establishes a "window" in phase space that selects a

bundle of trajectories on the turbulent attractor for averaging. The exponential

divergence property then guarantees that this averaging process yields a finite size

structure. At the same time it is clear that many such "windows" are possible, and
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each has a "structure" associated with it. This geometrical interpretation in phase

space explains not only why conditional sampling schemes work, but also why they

have problems. These ideas are elaborated in the Appendix, which is a copy of a

paper presented at the International Seminar on Near-Wall Turbulence, Dubrovnik,

Yugoslavia, May 1988.

IMPLICATIONS

The results described above are important for many current studies of fluid tur-

bulence. Foremost, we believe that we have supplied the first strong evidence
that fully developed turbulent solutions to the Navier-Stokes equations

are confined to a finite-dimensional, strange, attractor. This implies several

things:

" Time randomness in fluids results from the "sensitive dependence ..." mecha-
nism intrinsic to such attractors.

" The intrinsic complexity of turbulence has finally been measured. Though the

dimension of the attractor is finite, its magnitude places this dynamical system
in an entirely different class from those analyzed experimentally in the Binard

or Taylor-Couette problems. Shear turbulence cannot be considered to

result from the interactions of a few degrees of freedom.

" For experimentalists the news is largely negative. No available method of

calculating dimension from measured data can handle a dimension so high.

The number of points required for the "correlation" dimension, 10 if the scaling

region is to extend over only a factor of 2, is 10108 ! A billion points would
give a scaling region within a radius variation of only 6%. Thus there was no

chance that the previous attempt12 to calculate dimension by these methods

could have succeeded.

" Methods suitable for analysis of low-dimensional systems will encounter severe
difficulties in the turbulence problem. Even assuming that a 360-dimensional

system of equations can be found, say by using Karhunen-Loeve decomposition

methods19 ,20 , the resultant dynamical system is still likely to be too complex

for analysis. Simply extracting the fixed points of a 3601 order system is a

non-trivial task. And the subsequent analysis of phase space orbits in terms

of these singularities is daunting even to contemplate. Thus i4 seems unlikely,
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given the dimension of the attractor, that even a 40 mode truncation could get

the basic, qualitative dynamics of the full system correct, though this remains
to be demonstrated. New analysis methods must be developed for such high

dimensional systems.

FUTURE WORK

One of the promises of dynamical systems theory has been to predict the

physics of systems from the geometry of their solutions in phase space. This is no

more than a statement that the physical phenomena in a system must find expres-

sion or origin in the mathematical structure of its underlying solution attractor.

With the strange attractor established as the underlying mathematical structure

of shear turbulence, there is now a wealth of possibilities for perceptive linking of
its geometry to actual flow phenomena. Our efforts using these methods have al-

ready met with some success( see previously mentioned appendix ), by establishing

a connection between the exponential divergence properties of such attractors and

experimentally observed "coherent structures"2 1 . This is just the first step in a pro-
cess which promises to provide insight into the global properties of turbulence by

studying the geometry of its attractor. Some other possibilities are outlined below.

Both the Renormalization Group Theory(RNG) 22 approach to turbulence as

well as the large eddy simulation technique implicitly assume that, beyond some

wavenumber, the effect of turbulent eddies is just to cascade energy from larger

scales and dampen it, without affecting the fundamental dynamics of the larger

scales. A study of dimension versus resolution will provide new information on the

scale at which this common assumption becomes justified. Until the dimension stops

changing with resolution there is doubt that the fundamental dynamical mechanisms

in the flow are being modeled correctly, since addition of scales complicates 23 or

simplifies1 them further. If, however, the dimension asymptotes quickly with scale,

this may help justify the use of coarser simulations and modeling to study the

qualitative dynamics of a flow even when its quantitative aspects( skin friction,

Reynolds stress distribution etc.) are in error. In essence we will study the structural

stability of Navier-Stokes solutions to the addition of small scales.

Definitions of "coherent structure" are almost as numerous as the people who

have measured them. Our work 21 has led to a deeper understanding of this arb-
trariness, and shown that "structr'_-" can be found at any time in a turbulent flow.
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Since geometry led us to the realization that there is structure everywhere on the

attractor, it is natural to ask if geometry can lead us to a finer, more restrictive,

definition of "coherent structure". The question being asked here is: Are any points

on the attractor special? And do the flow structures defined by the neighborhood

of these points have a transparent physical interpretation?

Finally, the geometry of attractors may give new insights into the turbulence

modeling problem. Reynolds-averaging the NS equations is equivalent to the geo-

metric operation in phase space of finding the centroid of a flow's strange attractor.

Is there another set of operations in phase space which will find this centroid without

Reynolds-averaging? A study of the geometry of solutions to the Reynolds-averaged

equations and their relation to the attractors of the unaveraged equations might re-

veal such a link .

PRESENTATIONS AND PUBLICATIONS

Both our work on the calculation of dimension and on the relation of coherent

structures to strange attractors is in preparation for submission to journals. The

dimension calculation has already been described in several public forums. Along

with seminars at both Stanford and Brown, the dimension work was presented at

the APS Fluid Dynamics mecting at Eugene, OR. in 1987, and most recently as an

invited talk at the annual meeting of the American Association for the Advancement

of Science (AAAS) in San Francisco, January 1989. A manuscript of that talk is to

appear in a forthcoming book published by AAAS. The coherent structures work

was originally presented at the 1987 APS meeting, and, in much exparded form, at

the International Seminar on Near-Wall Turbulence, Dubrovnik, Yugoslavia, May

1988. It will also appear in the proceedings of that conference.
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Figure Captions

Figure 1. Distribution of Lyapunov exponents, Ai

10



co

'3c

'3Q

020*1 0,0 OT- 02



APPENDIX



CONNECTING COHERENT STRUCTURES

AND STRANGE ATTRACTORS

By Laurence R. Keefe

Center for Turbulence Research, NASA Ames Research Center, Moffett Field, CA 94035,

and Stanford University, Stanford, CA 94305

INTRODUCTION

The current belief in "coherent structures" is a synthesis of two historically per-
sistent notions of turbulence. On the one hand has been the perception that tur-

bulence is a stochastic process, while on the other has been the recognition that
.ieddies", identifiable structures within the stochastic stew, are ubiquitous in shear

turbulence under all conditions. From these two views emerges the belief that tur-

bulence contains structures, similar in character, but random in occurrence, whose

dynamics strongly influence evolution of the flow.

A third view of turbulence, neither historic, nor yet persistent,(nor even widely ac-
cepted!) derives from nonlinear dynamical systems theory. This theory suggests

that turbulent solutions to the Navier-Stokes equations are confined to "strange

attractors". and, by implication, that turbulent phenomenology must find some

expression or source in the structure of these mathematical objects. This view

is advocated here, with arguments and examples to link coherent structures to

some of the commonly known characteristics of strange attractors. Fundamental
to this link is a geometric interpretation of conditional sampling techniques used

to "educe" coherent structures, which offers an explanation for their appearance in

measurements as well as their size.

Development of the link between attractors and structures first requires a brief
discussion of both structures and conditional sampling techniques, as well as dy-

namical systems theory. Following this, a generic sampling technique is applied to
the Lorenz equations to demonstrate the eduction of "coherent structures" from

this model system. Attention then focusses on describing the Navier-Stokes equa-

tions as a dynamical system, after which the geometrical meaning of the VITA

technique(Blackwelder & Kaplan, 1976) and Quadrant analysis(Lu & Willmarth,

1973) within this system is explained. Finally, some comments are made regard-

ing the arbitrariness of the sampling process and the implications for questions of

significance.
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COHERENT STRUCTURES AND COHERENT SAMPLING

Historically, the view that turbulent flow contains structure has arisen from flow
visualization studies. Two better known examples of this are the bubble pictures
of Kim, Kline & Reynolds(1969) in the sublayer of a turbulent boundary layer,
and the shadowgraph pictures of Brown & Roshko(1974) in the mixing layer. In
both cases a recognizable sequence of events or physical structures, occurring ir-
regularly, could be identified in the pictures. The belief that structures( or se-
quences) such as these were important to the flow dynamics led to the desire to
extract their signature from the stochastic background for independent study. A
problem in pattern recognition resulted, although the formalism and language of
that field has rarely been applied(Blackwelder, 1978) to the problem of defining a
conditional sampling scheme. In each case investigators first construct a "feature"
space from those characteristics they believe are unique to the event or structure.
In this they are guided by their sense of what important physical processes are
associated with a typical event, and how best to identify such processes when
they occur. Thus, choice of features includes an element of arbitrariness. In ad-
dition this choice can be affected by the kind. or amount. of data not measured.
(Readers are reminded of the story of the blind men examining an elephant. Each
touches something the other doesnot; each conjectures the essential nature of the
elephant to be that which they touched.) The result of this attempted character-
ization is a detection criterion that is a function of the features. When applied
to available transducer signals, it announces occurrences of an event or structure.
Once an event's temporal origin has been determined by this scheme. it is aligned
with transducer time histories from other events so that they can be ensemble
averaged and the coherent signature extracted. Thus development and applica-
tion of a conditional sampling scheme follows the sequence: choice of features that
are functions of available transducer signals; development of a detection criterion
based on the features; application of the criterion to determine event origins; en-
semble averaging of transducer signals aligned on event origins.

In the sampling schemes used to date the transducer signals have often been hotwire
signals for the velocities Uij( i denotes velocity component, j indexes the physical
position of the measurement in an array). From these signals M features, f,, have
been constructed. Thus

f = (tlj) (1)

Typical features have been time and space derivatives of the Uij, as well as powers
and short term averages of these quantities. Choosing M features establishes a M-
dimensional "feature" space.

The state of the flowfield at the measurement array is characterized in time by a
feature vector

f(t) = {A((Uj),2(Uij),'" fM([Tirj)} (2)
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which sweeps out some trajectory in the feature space. and whose components are
the value of the features at each instant. The detection criterion, call it G. is a
function of the feature variables. In simple cases it can be written as

G(f,) = 0. (3)

Often this represents some surface in the feature space. When the feature trajec-
tory f(t) crosses the surface G(f,) = 0.. an event or structure is signalled. The
instant of crossing, or some time referenced to the crossing , becomes the event
origin. It is used to align transducer signals or feature traces from different events
for ensemble averaging. The result: a time trace "typical" of all qualitatively sim-
ilar, but randomly occurring, events. Since averaging extracts a non-zero trace
from a stochastic background. the average is considered to represent an underlying
"coherent" structure, shorn of the incoherent fluctuations which obscured it.

DYNAMICAL SYSTEMS, STRANGE ATTRACTORS AND CONDI-
TIONAL SAMPLING

Consider a system of ode 's( not necessarily finite)

dX
A h(X) 

(4)di

i = (X1 (t),x 2 (t).x 3 (t),...) (5)

With the initial condition

Xo = (X 1 (O),X 2 (0),X 3 (0),.)

the solution to the system (4) can be written

X 4X.o(X) = x0 (.), (6)

or

Xi= (t)

X is the phase space or "state" variable. Each point on the solution trajectory
X = * x(t) completely characterizes the configuration of the system at an in-
st ant.

If the system of ode's (4) has only two members, the time asymptotic behavior of

X has only three possibilities: steady state, periodic motion, divergence. If the
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system is dimension three or greater, and is dissipative ( the trace of the Jaco-
bian matrix [,Ohi 1/Xj] < 0). then the asymptotic solution may be confined to a
"strange attractor" in the phase space. Solutions confined to strange attractors
are almost everywhere locally unstable, but are globally stable to perturbations
which do not cross the bounds of their basins of attraction. Thus system states

which are initially nearby diverge exponentially from each other for short times.

Trajectories on strange attractors never repeat themselves exactly. but ultimately
will pass arbitrarily close to any previous portion of the trajectory.

Consider the character of a bundle of trajectory segments which all pass througb
some "window" in the space of the attractor. If the window is small enough, the
system states occurring on each trajectory segment at the instant of passage through
the window will all be sinilar. The sequence of states along each segment remains
correlated with those along other segments for some time after (and before) pas-
sage through the window. However, exponential divergence of nearby trajectories
guarantees that this correlation time is finite. An ensemble average over trajec-
tories passing through the window, and aligned on the window passage time, will
yield a non-zero trace over finite time for any phase space component( or function
of them) which has a zero mean value.

The above concepts are illustrated in Figures 1-3. The strange attractor which
represents the asymptotic solution to the Lorenz system for a particular set of pa-
rameter values is pictured in Figure Ia. The X-Z plane intersects the attractor
transversely, and a large rectangular window has been outlined in this plane. Each
time the solution trajectory passes through the window, the next 500 points in the
time series of the Y component of the solution are traced in Figure lb. In Fig-

ure ic the ensemble average of the 152 traces so obtained is displayed. Because
the window is large the selected traces are not substantially correlated with each
other. Despite the fact their Y coordinates are identically zero at window passage,
the range of X and Z values at intersection means that the system states (X.Y,Z)

are "far" apart. In Figure 2 the window area has been decreased by a factor of
five, and the correlation between selected traces increases substantially. The en-

semble average now clearly shows a non-zero value for finite time after passage. A
further decrease in window size, now barely discernible in Figure 3. again reduces
the number of traces selected from a given record length, but sharpens their cor-

relation. The non-zero portion of the average increases both in duration and peak
magnitude as a result.

It is easy to see that the "window" constitutes a conditional sampling criterion

in the phase space of the Lorenz attractor. Here the 'features" are the primitive
variables (X,Y,Z) themselves, and the detection criterion, though not in the form
of equation (3), is a simple function of the features, namely

Y =0.

a<X <b (7)
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c< Z<d

The event criterion (7) simply chooses the bundle of trajectories on the attractor
which are ensemble averaged. If the detection criterion is too broad, selected tra-
jectory segments are uncorrelated to begin with, and averaging fails to extract a
structure. Tightening the selection criteria(decreasing the window size) increases
the likelihood that trajectory segments are initially correlated, but exponential
divergence of trajectories on the attractor guarantees that their mutual correla-
tion time is finite. At times beyond the correlation limit, the ensemble average of
the trajectories will be zero. If the size of a structure is defined as the length of
non-zero trace which results from averaging, then the tighter the selection crite-
rion. the greater the size of the educed event. Given the minimum distance. A,
between trajectories at the event window, information theory(Shaw.1981) suggests
that an upper bound on the event size or duration is given by a constant times the
logarithm of 1/.N. This separation between trajectories must be calculated in the
full phase space of the dynamical system, not in some reduced dimension feature
space.

THE NAVIER-STOKES EQUATIONS AS A DYNAMICAL SYSTEM
AND APPLICATIONS OF CONDITIONAL SAMPLING TO ITS SO-
LUTIONS

Constructing the link between coherent structures measured by experimentalists
and their hypothesized origin in the structural details of an attractor requires that
the Navier-Stokes equations can be considered a dynamical system in the form
(4), and that its solutions are confined to a strange attractor. The first is shown
below. For the second, there are rigorous results to prove that solutions to the
two-dimensional Navier-Stokes equations are confined to a finite dimensional at-
tractor(Constantin & Foias ,1985). Similar rigor has not yet been obtained in the
three-dimensional case. However, the author has performed calculations on low
Reynolds number. turbulent channel flow which indicate, at least in this important
case. that solutions to the three-dimensional Navier-Stokes equations are confined
to a finite ( but large) dimension strange attractor( Keefe et al., 1987). The point
may not be proven, but the circumstantial evidence is strong.

Formally, the Navier-Stokes equations are an infinite dimensional system because
they require functional, rather than discrete, initial data. However, through the
practice of disretization, both experiments and numerical simulation project the
system onto a finite one. An experimenter examines a finite volume of flow, and
makes measurements of flow quantities at a finite number of points. A numerical
simulation operates in a computatioinal domain which may be infinite, but flow
quantities are calculated at a finite number of points( the grid) within it.
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Imagine a phase space vector S whose components are the flow velocities u, v. w
at N different points in space

S = (U1,V1,w1,u2.,W2,*UNv'NWN) (8)

Spatial discretization schemes( finite difference, collocation) applied to the Navier-
Stokes equations will yield a finite dimensional dynamical system

d9= g(s) (9)

The right hand side of each member of equation (9) will have terms linear in the
velocities due to viscosity, and two kinds of nonlinear terms. The first are due to
the convective terms, and couple nearby velocities together through their space
derivatives. The second kind will be due to the pressure gradient. and globally
couple all components together in incompressible flow. As the number of points at
which velocities are known increases towards infinity, system (9) becomes equiva-
lent to the Navier-Stokes in the sense that each requires the same initial data, and
solution of either gives the entire flow field.

Because of discretization neither experiments nor calculations have access to the
full dynamical system represented by (9) as N - oo. Making a single point mea-
surement of one velocity component records the solution to but one equation from
the infinite dimensional system. It is impossible to characterize the entire quantitative
state of a multidimensional dynamical system by looking at only one of its com-
ponents. However, in theory(Packard et al.,1980, Takens, 1981), it is possible to
recover the full qualitative behavior of a system from one of its components by
use of embedding techniques. Conceptually, then, it is possible to characterize an
entire flow field from one hotwire measurement, provided that one time history
can be processed enough to yield sufficient numbers of independent coordinates. If
they are sufficient, the qualitative dynamics of the flow on its attractor are repro-
duced on a different attractor in this new phase space.

With more hotwire measurements fewer additional independent coordinates need
be derived for a complete description, but enough that the qualitative dynamics
are reproduced. Given the choice between describing a system by ten coordinates
derived from a single measurement of a primitive variable, or ten coordinates each
of which is a different primitive measurement, the latter is the better choice. Both
should give the same qualitative description of the dynamics, but the second also
provides a quantitative description.

It is important to realize that discretization is a projection process, and that in
this process quantitative information about the system under study is obscured or
lost. Construction of a "feature" space for event recognition is such a discretiza-
tion. It projects the full solution attractor onto a reduced dimension phase space
and may make inaccessible the phase coordinates needed to discriminate between
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apparently similar states. In applications of conditional sampling techniques to
discrete numbers of hot wire signals this loss produces the phase jitter and tempo-
ral misalignment problems which reduce coherence between events, and which may
require extensive iterative processing of the signals for a structure to be educed
(Hussain, 1983).

In light of the previous paragraphs, eduction of coherent structures by conditional
sampling can be viewed as the following set of operations on the full solution at-
tractor of the Navier-Stokes equations. First, discretization of the flow field col-
lapses the full attractor onto a reduced dimension subspace. Second, a "feature"
space is constructed out of components from this subspace, or functions of them.
The number of features selected determines the dimension of the new space, which
may actually be higher than that resulting from the discretization. This new space
contains a finite size object to which the feature trajectory is confined, but this
object is not an attractor in the rigorous sense. Third comes construction or spec-
ification of an event criterion in the feature space. The criterion is a subset of the
feature space( curve, surface, surface patch, etc.), but may be infinite in extent.
Fourth, the intersection points between the feature trajectory and the event crite-
rion are determined. Finally, an ensemble average of primitive, or feature, traces
aligned on these intersection points is obtained. Using velocity signals derived
from numerical simulations of low Reynolds number channel flow (Kim, Moin
& Moser, 1987) these processes are illustrated for both the VITA technique and
Quadrant analysis, two conditional sampling schemes which have played important

roles in studies of near wall structure.

In Blackwelder and Kaplan's 1976 application of the VITA technique discretiza-
tion of the flow field projected the full attractor onto a one dimensional subspace.
namely a single hotwire measurement at y+ = 15. A two dimensional feature
space was constructed from this signal using the moving average operation on the
raw signal and its square. Thus the feature coordinates were

t+T

(TW U(',)d'," (10)

U?(t) 1 ] U 2(r)dr

2

An additional constant was derived, the meansquare value

fImit FT
2

Urma Too - In

The sampling criterion was the parabola

U1 - ([r 1t)
2 + kltrnm (11)
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where k1, the threshold constant, had a value 1.2. Passage of the feature trajec-
tory from outside the parabola to inside signalled an event. The temporal origin
of the event was assigned to the midpoint of the trajectory's residence within the
parabola. Figures 4-6 illustrate the geometry of this scheme.

Figure 4 shows the effect of using too short an averaging time to create the feature
coordinates. As the averaging time T in equation (10) approaches zero, the fea-
ture trajectory will become a plot of U2(t) against U(t). This will be a parabola
opening upwards with vertex at the origin. The sampling criterion (11) is always
a similar shaped parabola whose vertex has been displaced upwards from the ori-
gin an amount dependent upon k1 . Since the two parabolas are the same shape,
the feature trajectory can never intersect the event criterion in this case. Such a
situation can be seen in Figure 4a.

Figure 5 shows the VITA technique using values of k, and T similar to those in
Blackwelder and Kaplan. In Figure 5a the feature trajectory and event criterion
are plotted. Increasing the averaging time now causes the feature trajectory to
occasionally cross the parabola. Each time it does the 300 time points of U(t)
centered around the event origin are plotted in Sb, and the origin is marked on
the time line in 5d by a vertical tick. Figure 5c shows the ensemble average of
the aligned events. It should be noted that the Reynolds number of the simula-
tion data is much lower than that of the boundary layer employed in the original
measurements. The measured bursting frequency, and the amplitude of the ensem-
ble average, are lower than found by Blackwelder, but the shape and duration of
the event are similar. Here the vertical tick marks on the average plot represent
the rms value of 11(t). More important than these comparisons however, is the
relation between the shape of the feature trajectory and the sampling criterion.
With very high probability, the feature trajectory retains a parabolic character
even with longer averaging times. The event criterion is essentially parallel to this
"fuzzy" parabola in feature space. so the chances of intersection are low. Those in-
tersections that do occur cover a wide range of the feature coordinates. This sug-
gests that the events detected are not "close" to each other in the full phase space,
and may decorrelate rapidly. With this feature trajectory the detector isn't sharp
and doesnot necessarily pick out high probability events. However, multiplying the
burst duration times the number of events suggests that some part of the process

is going on 25% of the time.

In later work Blackwelder and Haritonidis(1983) sharpened the detection crite-
rion by adding a third feature coordinate: OU,/t. They chose to select only those
events for which aU/oat > 0. In this case the feature trajectory is a space curve,
and the event criterion is that half of a parabolic cylinder which extends into pos-
itive oU/& space. Figure 6 shows this scheme projected back onto two dimen-
sions. Fewer events are detected from the same time history, but their correlation
is sharper, with the result that the ensemble average has a larger peak amplitude.
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In an early study of the bursting process Lu & Willmarth invented the technique
of Quadrant analysis. Here discretization projects the full attractor down to a
2-space consisting of U and V measurements at y' = 15. The primitive veloci-
ties are also the feature variables in this case. Two constants, the rms values of U

and V. are formed. Then the event criterion is a rectangular hyperbola in hodo-
graph(U,V) space

UT = -kJ,;, 3Vms (12)

A further distinction on events detected by this scheme was to separate the quad-
rant 2(bursts) events from those in quadrant 4(sweeps). Figure 7 displays this
scheme applied to the same velocity fields used for the VITA technique. A thresh-
old constant k2 = 4.(within the range used by Lu and Willmarth) is used, and
only quadrant 2 events have been selected. Again the 300 time points of U(t) cen-
tered on the event are plotted in 7b. Clearly the temporal behavior of the event
selected here is different from that chosen by VITA. However, comparison of the
time lines shows that the two schemes do choose events at roughly the same time,
occasionally almost exactly. In contrast to VITA, Quadrant analysis seems to be a
sharper detector, since the feature trajectory at y' = 15 is more transverse to the
detector that parallel. This produces a tighter clustering of feature states at the
event window. While such continues to be true for velocities measured at greater
distances from the wall, it is not true for those measured at lesser distances, be-
cause the smallness of V makes the feature trajectory almost parallel to the [7

axis. In addition. clustering in feature space is no surety for similar behavior in
the full phase space. Thus sharpness of this kind may be an entirely spurious indi-
cator of goodness in a detector.

CONCLUSIONS

Discretization connects the feature space of a conditional sampling technique to
subspaces of the full solution attractor of the Navier-Stokes equations. A geomet-
ric interpretation of the sampling criterion, coupled to the exponential divergence
property of trajectories on strange attractors, provides an explanation for the mea-
surement of "structure" in turbulence. The sampling criterion selects a group of
nearby trajectories on the attractor for ensemble averaging. Their nearness implies
a certain mutual correlation initially, but exponential spreading guarantees the
correlation time will be finite. This correlation time can be increased by sharp-
ening the criterion. An ensemble average thus produces a finite duration event or
structure. The choice of the sampling criterion is essentially arbitrary. An enor-

mous amount of flow information can be lost by the discretization process, so each
investigator attempts to recover some of it by perceptive design of the sampling
criterion. Carried to its logical extreme, it is clear that any sufficiently restrictive
sampling criterion will extract a structure from a dynamical process confined to
a strange attractor. If structures are defined as those objects which can be ex-
tracted by conditional sampling criteria, then they are everywhere one looks in
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turbulence. Some idea of this arbitrariness is obtained by modifying the VITA
technique slightly to to see what it will detect.

Write the sampling criterion

Urm = A(Uim) 2 + kiL~m, (13)

The additional constant A controls the spreading rate of the parabola. Figure S
shows the result of sampling when the threshold k, has been raised to 3., but the
parabola has been flattened by letting A=.I. In addition, the moving average has
been shortened and only those events where the moving average is negative have
been selected. Equation (13) no longer has a straightforward physical interpreta-
tion. but it is sharper as a detector in feature space, and selects more events than
unmodified VITA. By coincidence the "structure" it educes is very similar to that
obtained by Quadrant analysis.

Arbitrariness in the selection process begs the question of significance. There is
structure in turbulence. However, it is up to each investigator to supply the phys-
ical arguments which raise their ensemble average to the status of a structure
which contributes significantly to the dynamics of the flow.
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